Course Specifications (2011 - 2012)

A. Basic Information

Course Title		Structural A	nalysis (2-A)		Course Code:	CVE 211	
Lecture:	3	Tutorial:	3 Practical 0		Total	6	
Programme (s) on which this course is given:			B.Sc. Civil Engineering (General)		g (General)		
Major or minor element of program:			Major				
Department offering the program:		gram:	Civil Engineering				
Department offering the course:		irse:	Civil Engineering				
Academic Year of p	orogram:	Second		Level of prog	Level of program:		
Date of specifications approval:				16/3/2010			

B. Professional Information

1. Overall aims of course

By the end of the course the students will be able to:

To have enough knowledge on the fundamentals of analysis and theory of structures, and to help the students to be familiar with the principles of the design of the structures including safety requirements and economical design.

2. Intended Learning outcomes of Course (ILOs)

a. Knowledge and Understanding:

a.3) Understand characteristics of engineering materials related to discipline.

a.4) Understand principles of design including elements design, process and/or a system related to specific disciplines.

a.13) Apply Engineering principles in the fields of reinforced concrete and metallic structures analysis and design, geotechniques, and foundations, hydraulics and hydrology, water resources, environmental and sanitary engineering, roadways and traffic systems, surveying and photogrametry. b. Intellectual Skills

b.2) Select appropriate solutions for engineering problems based on analytical thinking.

b.3) Think in a creative and innovative way in problem solving and design.

b.4) Combine, exchange, and assess different ideas, views, and knowledge from a range of sources.

b.7) Solve engineering problems, often on the basis of limited and possibly contradicting information.

c. Professional and Practical Skills

c.1) Apply knowledge of mathematics, science, information technology, design, business context and engineering practice to
c.2) Professionally merge the engineering knowledge, understanding, and feedback to improve design, product and/or services.
c.4) Practice the neatness and aesthetics in design and approach.

d. General and Transferable Skills

d.6) Effectively manage tasks, time, and resources.

d.7) Search for information and engage in life-long self learning discipline.

d.9) Refer to relevant literatures.

3. Contents

Week #	Topics	No. of Hours	ILOS	Teaching / learning methods and	Assessment method
			a3, a4, a13	Lectures	Assignments
1	Introduction, shear stress	2	b2, b3, b4, b7	Case study	Quiz

I	shafts	J	c1, c2, c4	Class activity	Mid-term exam	
	Shans		d6, d7, d9	Tutorial	Final exam	
2			a3, a4, a13	Lectures	Assignments	
	Statically indeterminate shafts	3	b2, b3, b4, b7	Case study	Quiz	
Z	Statically indeterminate sharts	3	c1, c2, c4	Class activity	Mid-term exam	
			d6, d7, d9	Tutorial	Final exam	
			a3, a4, a13	Lectures	Assignments	
3	torsion of non circular shafts,	3	b2, b3, b4, b7	Case study	Quiz	
3	thin walled sections	5	c1, c2, c4	Class activity	Mid-term exam	
			d6, d7, d9	Tutorial	Final exam	
	Chaor stress is been Chaor		a3, a4, a13	Lectures	Assignments	
4	Shear stress in beams, Shear stress distribution of in	3	b2, b3, b4, b7	Case study	Quiz	
4	common types of beams	5	c1, c2, c4	Class activity	Mid-term exam	
	common types of beams		d6, d7, d9	Tutorial	Final exam	
	ab a sufferer built un a setiens	3	a3, a4, a13	Lectures	Assignments	
5	shear flow, built up sections, shear stress in thin walled		b2, b3, b4, b7	Case study	Quiz	
5	section.		c1, c2, c4	Class activity	Mid-term exam	
			d6, d7, d9	Tutorial	Final exam	
		3	a3, a4, a13	Lectures	Assignments	
6	shear stress for unsymmetrical		b2, b3, b4, b7	Case study	Quiz	
0	loading, shear centre		c1, c2, c4	Class activity	Mid-term exam	
			d6, d7, d9	Tutorial	Final exam	
				a3, a4, a13	Lectures	Assignments
7	applications on normal and shear stresses due to	3	b2, b3, b4, b7	Case study	Quiz	
1	combined loading.	5	c1, c2, c4	Class activity	Mid-term exam	
	combined loading.		d6, d7, d9	Tutorial	Final exam	
			a3, a4, a13			
8	Midterm Exam		b2, b3, b4, b7			
			d6, d7, d9			
			a3, a4, a13	Lectures	Assignments	
0	Components of plan stresses,	2	b2, b3, b4, b7	Case study	Quiz	
9	transformations of plan	3	c1, c2, c4	Class activity	Mid-term exam	

	0.100000.		d6, d7, d9	Tutorial	Final exam
		2	a3, a4, a13	Lectures	Assignments
10	Principle stresses and there plans max shear stress and its		b2, b3, b4, b7	Case study	Quiz
10	plans, Mohr's circle.	3	c1, c2, c4	Class activity	Mid-term exam
			d6, d7, d9	Tutorial	Final exam
	Deflection of beams, relation		a3, a4, a13	Lectures	Assignments
11	between deflection and	3	b2, b3, b4, b7	Case study	Quiz
11	bending moments, double	3	c1, c2, c4	Class activity	Mid-term exam
	integration methods.		d6, d7, d9	Tutorial	Final exam
			a3, a4, a13	Lectures	Assignments
12	singularity function of the	3	b2, b3, b4, b7	Case study	Quiz
12	moment and its applications		c1, c2, c4	Class activity	Mid-term exam
			d6, d7, d9	Tutorial	Final exam
		3	a3, a4, a13	Lectures	Assignments
13	Moment area method, elastic		b2, b3, b4, b7	Case study	Quiz
13	weight methods		c1, c2, c4	Class activity	Mid-term exam
	d6		d6, d7, d9	Tutorial	Final exam
			a3, a4, a13	Lectures	Assignments
14	Conjugate beam methods.	3	b2, b3, b4, b7	Case study	Quiz
14	Conjugate beam methods.		c1, c2, c4	Class activity	Mid-term exam
			d6, d7, d9	Tutorial	Final exam
			a3, a4, a13		
15	Final Exam		b2, b3, b4, b7		
15	Fillal Exalli		c1, c2, c4		
			d6, d7, d9		
	Total	39			

4- Teaching and Learning Methods: Check using the symbol $\sqrt{}$

 Lectures
Practical training / laboratory
Seminar / workshop
 Class activity
 Case study

Project work
 Tutorial
Computer based work
Other :

5- Student Assessment Methods: $\sqrt{}$

Check using the symbol

	Assignments	to assess	a3, a4, a13	b2, b3, b4, b7		d6, d7, d9
\checkmark	Quiz	to assess	a3, a4, a13	b2, b3, b4, b7		d6, d7, d9
\checkmark	Mid-term exam	to assess	a3, a4, a13	b2, b3, b4, b7		d6, d7, d9
\checkmark	Oral exam	to assess	a3, a4, a13	b2, b3, b4, b7	c1, c2, c4	d6, d7, d9
\checkmark	Final exam	to assess	a3, a4, a13	b2, b3, b4, b7	c1, c2, c4	d6, d7, d9
	Design Project	to assess				
	Report	to assess				
	Experimental write up	to assess				
	Informally assessment	to assess				
	Other	to assess				

6. Assessment schedule

Assessment 1 Assignments on weeks	2 to 14
Assessment 2 Quizzes on weeks	4, 6, 10, 12
Assessment 3 Mid-term exam on week	8
Assessment 4 Oral Exam on week	14
Assessment 5 Final exam on week	15
Assessment 6 Design Project on weeks	
Assessment 7 Report on weeks	
Assessment 8 Experimental write up on weel	ks
Assessment 9 Informally assessment	

7. Weighting of Assessments

Assignments	5%
Quiz	5%
Mid-term exam	10%
Oral exam	20%
Final exam	60%
Design Project	
Report	
Experimental write up	

Informally assessment	
Other	
Total	100%

8. List of References

8.1 Course Notes

Lecture notes and handouts prepared by instructor

8.2 Essential Books (Text Books)

8.3 Recommended Books

Theory of structures: part I and part II by Eldakhakhni Mechanics of Materials by Beer and Johnson Visual Mechanics by Miller.

8.4 Periodicals Web sites, etc

9. Facilities Required for Teaching and learning

Lecture room equipped with overhead projector
Presentation board, computer and data show
Laboratory

Course Coordinator:	Prof. Osama Ahmed Kamal Mahmoud	
Course instructor:	Dr. Ibrahim Mohamed Mahdi Bazan	
Head of department:	Prof. Ahmed AdbulFattah Mahmoud Ahmed	

Signature:

D

Μ

Υ

Date:	4	1	2012